نگاشتهای خطی بین جبرهای باناخ که حافظ ویژگیهای طیفی اند
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر
- author احمد خیری خلیل
- adviser علی غفاری
- publication year 1392
abstract
ابتدا نشان میدهیم نگاشت خطی پوشا و حافظ طیف بین جبرهای فون نیمان باید یک همریختی جردن باشد نتیجه دوم در حالی که برای فضاهای باناخ xو y و a=x و b=(y) باشند پاسخ مثبت میدهند نتیجه سوم نشان میدهد که ایزومتری طیفی پوشا بین جبرهای باناخ نیمساده دارای بعد متناهی یک همریختی جردن است/
similar resources
نگاشتهای خطی حافظ طیف بین جبرهای باناخ
کاپلانسکی در سال 1970 مساله زیر را مطرح کرد: فرض کنید a و b جبرهای باناخ مختلط نیم ساده باشند و t یک نگاشت خطی یکدار حافظ طیف از a بروی b باشد. آیا t یک همریختی جردن است؟ در این پایان نامه ثابت می کنیم که مساله کاپلانسکی برای کلاس خاصی از جبرهای باناخ جواب مثبت دارد. ثابت می کنیم که هر نگاشت خطی یکدار حافظ ایده الهای چپ ماکزیمال از یک c-ستار جبر بروی c-ستار جبر یکدار بطور محض نامتناهی یک همریخ...
15 صفحه اولنگاشتهای حافظ حاصلضرب صفر روی جبرهای باناخ
یک نگاشت خطی t از یک جبر باناخ َ به جبر باناخ إ حافظ حاصلضرب صفر است هرگاه برای هر a,b در a بافرض ab=0 داشته باشیم t(a)t(b)=0 . هدف این پایان نامه بررسی این پرسش است که آیا هر نگاشت پوشا و پیوسته حافظ حاصلضرب صفر یک همریختی وزن دار است؟ نشان میدهیم که پاسخ این سئوال در مورد کلاس بزرگی از جبرهای باناخ شامل جبرهای گروهی مثبت است. روش ما شامل در نظر گرفتن یک نگاشت دو خطی ? از a×a به توی x است(برا...
نگاشتهای پوشای ضربی حافظ طیف بین جبرهای باناخ جابه جایی
فرض می کنیم t نگاشتی پوشا از جبر باناخ و جابه جایی نیم ساده واحددار a به روی جبر باناخ جابهجایی واحددار b باشد، که عضو واحد را حفظ می کند و برای هر ?(t(f)t(g))??(fg),g.f?a. در این صورت b نیم ساده است و tیکریختی است. شرط پوشایی t لازم است. به عنوان مثال نگاشتی غیرخطی و غیر ضربی t را از c*-جبر جابه جایی به توی خودش وجود دارد که عضو واحد را حفظ می کند و برای هر f و g در دامنه تعریفش، ?(tftg)=?(fg)...
15 صفحه اولجبرهای باناخ انقباض پذیر
فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.
full textمنظم بودن جبرهای باناخ و نگاشتهای دو خطی خاص
فرض کنید a یک جبر باناخ و "a دوگان دوم آن مجهز به ضرب اول یا دوم آرنز باشد. در این پایان نامه، شرایطی را بررسی می کنیم که تحت آن منظم بودن a، منظم بودن "a را ایجاب می کند. به عنوان یک نتیجه نشان می دهیم که سه ساختار "a-مدولی روی دوگان چهارم a بر هم منطبق اند. همچنین محکی را برای منظم بودن نگاشت های دو خطی کراندار خاصی بیان می کنیم و سپس منظم بودن و منظم آرنز خارج قسمتی بودن یک کلاس ...
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023